10CV62

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Design of Drawing of RC Structures

Time: 4 hrs.
Note: 1.Answer any TWO full questions from Part-A and any ONE question from Part-B.
2.Use of IS456-2000, SP-16 is permitted.
3.Missing data may be suitably assumed and stated.

PART - A

1 A two way fixed slab for a hall of internal dimensions $4.5 \mathrm{~m} \times 5.5 \mathrm{~m}$ has the following details:
i) Thickness of slab $=150 \mathrm{~mm}$.
ii) Short span steel = 10mm \#@ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
iii) Long span steel $=8 \mathrm{~mm} \# @ 140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
iv) Wall thickness $=250 \mathrm{~mm}$.
v) Torsion steel $=10 \mathrm{~mm} \# @ 170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
vi) Grade of concrete and steel $=$ M20 \& Fe415.

All the edges are discontinuous. Draw to a suitable scale the following :
a. Plan showing reinforcement details.
b. Cross section of slab @ mid span along short span.
c. Cross section of slab @ mid span along long span.
(20 Marks)
2 The following are the details of dog - legged stair to connect two floors 3.60 m apart.
i) Staircase Dimensions $=2.2 \mathrm{~m} \times 5 \mathrm{~m}$.
ii) Width of flight $=1 \mathrm{~m}$.
iii) Tread $=250 \mathrm{~mm}$.
iv) Riser $=150 \mathrm{~mm}$.
v) Width oflanding $=1.2 \mathrm{~m}$.
vi) RC slab supporting each flight $=150 \mathrm{~mm}$ thick.

It is provided with main reinforcement consisting of $10 \mathrm{~mm} @ 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ and Distribution reinforcement consisting of $6 \mathrm{~mm} @ 200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. Draw to a suitable scale.
a. The plan of staircase.
b. C/s of RC stair showing the reinforcement details.

Take Fe 415 grade steel and wall thickness as 250 mm .
(20 Marks)
3 A rectangular RCC column and footing have the following details :
i) Dimensions of column $=230 \mathrm{~mm} \times 450 \mathrm{~mm}$.
ii) Size of footing $=1.2 \mathrm{~m} \times 1.5 \mathrm{~m}$.
iii) Depth of footing at the face of column 450 mm .
iv) Depth of footing at the edges 150 mm .
v) Depth of foundation below ground level is 1.5 m .
vi) Details of reinforcement

Column $-\phi 16 \mathrm{~mm}-8$ numbers as main bar and $\phi 8 \mathrm{~mm} @ 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as lateral ties.
Footing - $10 \mathrm{~mm} \phi @ 90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ shorter direction
$10 \mathrm{~mm} \phi @ 120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ longer direction.
Use M20 grade concrete and Fe415 grade steel.

Draw to a suitable scale.
a. Sectional plan of column scale.
b. Sectional , elevation of column and footing.
c. Prepare the bar bending schedule for footing steel and column steel upto 3 m height above ground level.
(20 Marks)

PART - B

4 Design a combined footing for two columns of size $300 \times 300 \mathrm{~mm}$ and $400 \times 400 \mathrm{~mm}$ subjected to 500 kN and 700 kN respectively. The centre to centre spacing between column is 3.5 m . The width of the footing is restricted to 1.5 m . Take SBC of soil $=150 \mathrm{KN} / \mathrm{m}^{2}$. Use M25 concrete and Fe415 steel. Design slab and beam type combined footing.
(40 Marks)
Draw to a suitable scale :
a. Longitudinal section of footing.
b. Cross - section of footing.
(20 Marks)
5 Design a Cantilever retaining wall to retain an earth embankment with a horizontal top 3.5 m above ground level. Density of earth $=18 \mathrm{KN} / \mathrm{m}^{3}$. Angle of internal friction $\phi=30^{\circ}$. SBC of soil is $200 \mathrm{KN} / \mathrm{m}^{2}$. Take coefficient of friction between soil and concrete $=0.5$. Adopt M20 grade concrete and Fe415 steel.
(40 Marks)
Draw to a suitable scale.
a. Cross section of retaining wall.
b. Longitudinal section.

